Regulatory

Part:BBa_K4207056:Design

Designed by: Jesper Mickos   Group: iGEM22_Aboa   (2022-09-30)


SPLCV toehold switch B1


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

This toehold switch was designed according to the B-series ideal structure from Pardee et al. (2016). This structure was improved from the original toehold switch structure (Green et al., 2014) to reduce translational leakage. We screened the Sweet potato leaf curl virus genome for conserved sequences. Each sequence was divided into 36-nucleotide long subsequences and we designed toehold switches designed to specifically bind to the sequence. This toehold switch was designed using the 21-nucleotide linker (Green et al., 2014). We assigned a score for each toehold switch based on the three-parameter fit from Ma et al. (2018) and selected the best-ranking toehold switches for our library.

Source

This part was created by us, screening SPLCV whole genomes for conserved sequences to be detected by the toehold switches.

References

Ma, D., Shen, L., Wu, K., Diehnelt, C. W., & Green, A. A. (2018). Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synthetic Biology, 3(1). https://doi.org/10.1093/synbio/ysy018

Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N. M., Bosch, I., Dudley, D. M., O’Connor, D. H., Gehrke, L., & Collins, J. J. (2016). Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165(5), 1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

Green, A., Silver, P., Collins, J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 159(4), 925–939. https://doi.org/10.1016/j.cell.2014.10.002